
### Thinking About Psychology: The Science of Mind and Behavior 2e

Charles T. Blair-Broeker Randal M. Ernst



### Cognitive Domain



#### Module 27

## Thinking and Language

#### Module 27: Thinking and Language

### Thinking

#### **Cognitive Abilities**

• All the mental activities associated with thinking, knowing and remembering

#### Module 27: Thinking and Language

## Components of Thinking: Concepts

#### Concept

- A concept is a mental grouping based on a *shared similarity*.
- Your brain groups objects, events, and people that share some similar characteristics
- Your brain sorts information into conceptual categories for example, for *trees*, or *bicycles*, or *balls*.



### **Mental Categories**

- These *mental categories* let you make instant judgements about new objects you've never seen before.
- When you come across a new tree, you know in a split second that it belongs in the concept category of tree.
- You know this *because it is similar* (a barkcovered, wooden cyclinder with branches and needles or, in the right season, leaves)to other trees you have seen

#### Prototype

- A *typical best example* that incorporates the major features of a concept.
- The closer the new object is to our prototype, the faster and more easily we can categorize it. Which more closely resembles a chair?



### Whis is your prototype Tree?

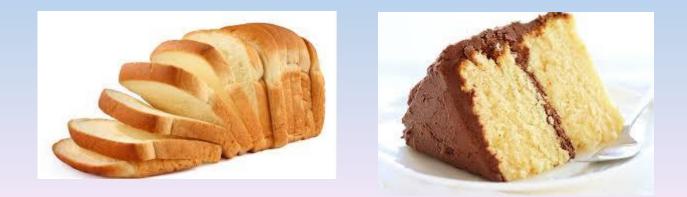
- We are quicker to recognize an oak tree as a tree than we are to assign a tiny Japanese bonsai tree to this category.
- Both qualify as trees, but the oak tree is much closer to our prototype it is somehow more *treelike* than a bonsai.



#### Which is more "birdlike"?






#### Which is more "fruitlike"?



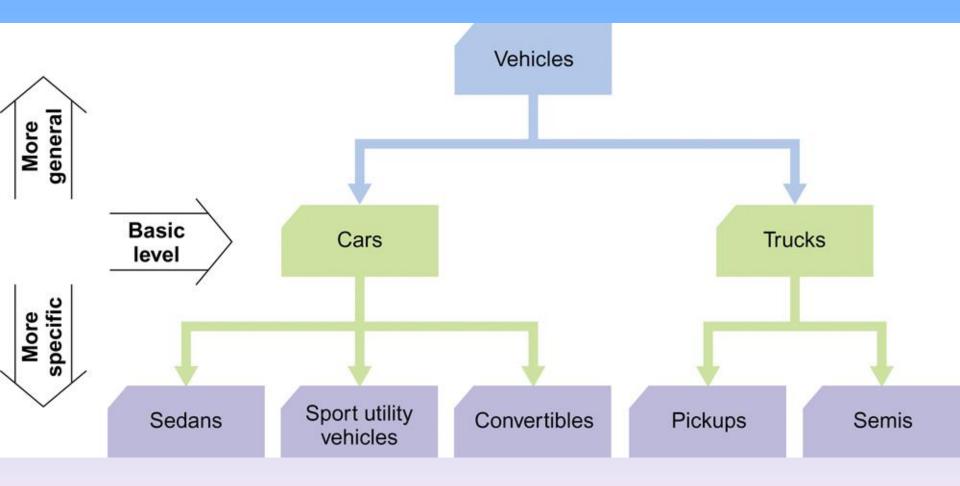


#### **Concept Hierarchy**

- A means to keep mental information organized *from basic concepts to specific ones*
- For example, we have a concept hierarchy for organizing food in our culture. We begin by learning basic concepts like *bread* and *cake*.



- We then connect those basic concepts to more specific ones that fit under each of the basic ones...
- *Bread* includes white bread, French bread, and banana bread and *Cake* includes angel food cake, sheet cake, and cupcakes






#### **Organizational Hierarchies**

- Grocery stores organize their products to take advantage of our understanding of broad categories, such as *frozen food* and *canned goods*. Libraries do the same with books.
- We develop similar hierarchies to deal with other concepts such as vehicles.

#### **Concept Hierarchy**



#### Module 27: Thinking and Language

## Problem Solving

#### Strategies for Problem Solving

- Problems exist when something *blocks* you from achieving a desired outcome.
- Problems can range from trivial to serious.
- We all have several strategies we apply when problems arise in our lives.
- Two broad categories are *algorithms* and *heuristics*.

#### Algorithms

 $A = \frac{1}{2}bh$  $A = \frac{1}{2} \times 6 \times 4$  4 ft  $A = \frac{1}{2} \times 24$ A = 12 ft6 ft

- An Algorithm is a *logical, step-by-step procedure* that, if followed correctly, will eventually solve a specific problem.
- Mathematical formulas are examples of algorithms. For example, the formula for computing the area of a triangle (1/2 base X height) is an algorithm.

#### Algorithm = Guaranteed Solution

- This type of problem-solving strategy *guarantees a solution* to a problem
- For example, systematically trying *every* possible combination on someone's locker until you come across the correct one or *checking* every shelf of every aisle in a grocery store until you find the Gatorade, will eventually yield a solution, but only after a long and tedious process.
- Therefore, this is *not always the most efficient* method to solve a problem.

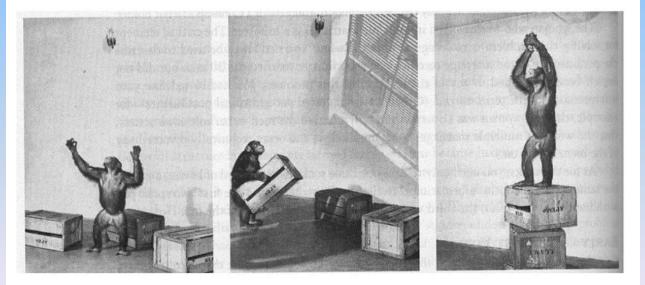
#### Heuristics

- Heuristics, on the other hand, are usually a lot *quicker*
- A rule-of-thumb problem solving strategy that makes a solution more likely and efficient but *does not guarantee a solution*

#### Heuristic = Shortcut

- These can be *handy shortcuts*, and when they work, we are likely to reuse them the next time we need to *save time* and increase our mental efficiency in a similar situation.
- For example, *checking the canned goods section* of a grocery store to find a particular brand of baked beans (*rather than checking every aisle*)
- Or using *spelling rules* such as "*i* before *e* except after *c*" (but doesn't work for words like neighbor, weigh, or caffeine)

### Insight


- Sometimes the solution to a problem *pops into your head* so quickly that you don't have time to use a problem-solving strategy
- This *sudden realization of the solution* to a problem is called insight
- "Aha" experience
- For example, word jumbles LYOGSPCYOH



#### Kohler Experiment

• In Kohler's classic study, a chimp *suddenly realized* he could stack several boxes to form a platform from which he could reach banana that had been suspended from the ceiling

Kohler (1945): monkey and banana problem.



Kohler observed that chimpanzees appeared to have an insight into the problem before solving it

#### Module 27: Thinking and Language

## Problems Solving Problems

# When your own thinking gets in the way

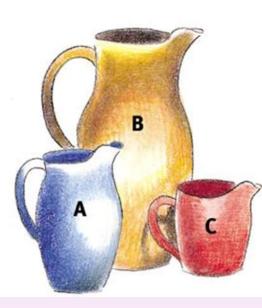
- A variety of normal tendencies can *hinder* our ability to solve problems effectively.
- Many of them give us tunnel vision, preventing us from searching for alternatives that might offer terrific solutions.
- Examples: *Fixation, Confirmation bias, Inappropriate use of heuristics, Overconfidence,* and *Framing*

#### Mental Set

- We have a tendency to approach a particular problem in a particular way.
- This is called a *mental set*.
- Mental sets are often *helpful* because they are *efficient* and may lead to a *rapid solution*.
- For example, many chess players have a particular move they like to open with because they have learned it usually leads to a win.

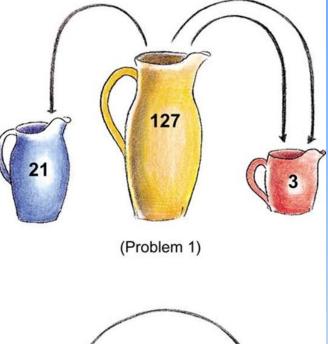
#### Fixation

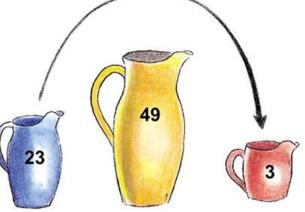
- Sometimes, however, *mental set can get in the way*. Instead of becoming an efficient problem-solving strategy, it becomes a *fixation*.
- A fixation is a mental set that hinders the solution to a problem.


#### Thinking Outside the Box

- One needs to think beyond the mental set to solve the new problem when fixation occurs.
- "Thinking outside the box" means *breaking away from routine, conventional ways of thinking* – away from your mental set.
- Even though these old ways of thinking may have worked in the past, something new and different may now be required.
- For example, Henry Ford's assembly line

#### Luchins Water Jar Problem


• Can you measure out the amount of water in the right-hand column, using any of the three jars (A, B, and C) with volumes as shown in the middle column?


| Problem | Given ju<br>A | ugs of the<br>B | se sizes<br>C | Measure out<br>this much water |
|---------|---------------|-----------------|---------------|--------------------------------|
| 1       | 21            | 127             | 3             | 100                            |
| 2       | 14            | 46              | 5             | 22                             |
| 3       | 18            | 43              | 10            | 5                              |
| 4       | 7             | 42              | 6             | 23                             |
| 5       | 20            | 57              | 4             | 29                             |
| 6       | 23            | 49              | 3             | 20                             |
| 7       | 15            | 39              | 3             | 18                             |



#### Luchins Water Jar Problem

Problems 1 through 7 can all be solved by filling Jar B, then pouring off enough water to fill Jar A once and Jar C twice (desired volume = B – A - 2C or just A – C for problem 6 or A + C for problem 7)

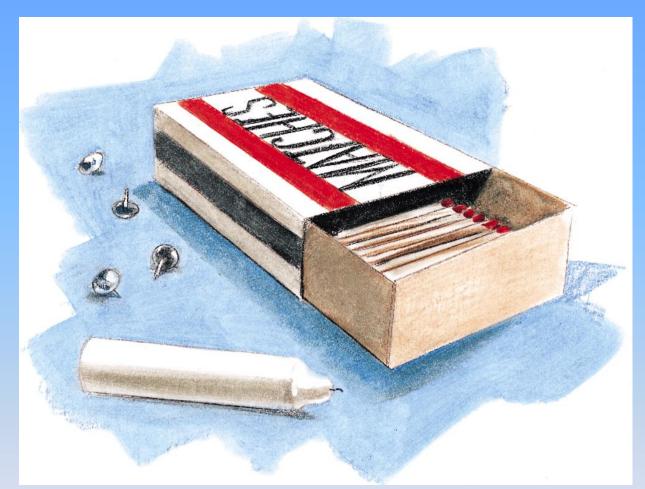




(Problem 6)

#### **Functional Fixedness**

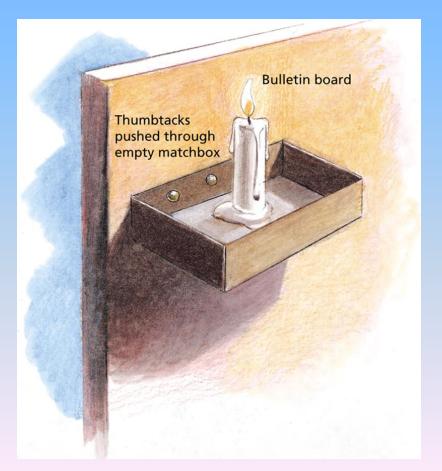



- This is the tendency to think of things *only* in terms of *their usual functions*.
- What if you need to remove a screw, but don't have a screwdriver?
- If you have trouble thinking of other things that can be used to perform this function, you are experiencing functional fixedness.

### **Overcoming Functional Fixedness**

• If you are mentally flexible enough to realize that *a coin, a butter knife, the edge of a credit card, or a paper clip* can all be used as a substitute screwdriver, then you have overcome functional fixedness.




#### **Functional Fixedness**



Can you think of a way to use these materials to mount the candle on a bulletin board?

#### **Functional Fixedness**

• If you could not imagine using the box as anything other than a container to hold matches, functional fixedness impaired your problem-solving ability.



#### **Confirmation Bias**

• Tendency to focus on information that *supports preconceptions* and not notice that which refutes it



• Can affect jurors in criminal trials who each create their own stories to explain what happened and then may only pay attention to testimony that supports their theory

#### Module 27: Thinking and Language

# Counterproductive Heuristics

# Availability Heuristic



- Estimating the likelihood of events based on their availability in our memory
- Can be correct or incorrect
- For example, if you hear thunder, you may be quick to assume that rain will follow because you have *many instances available in your memory* when thunder signaled rain.

# Not always accurate



- Sometimes, however, the information available in our memory *is not such a good indicator*.
- Available images can *distort our thinking*. Many people buy lottery tickets regularly because images of winners *lead them to believe winning big is more likely than it actually is*. They don't show the much more common losers.

# Works in Reverse too



• Likewise, someone who has *just seen a report of a shark attack or plane crash* on the news might not want to swim in the ocean or fly in an airplane even though the likelihood of those things actually happening to them are extremely small.

# Overconfidence

- More often than not, people overestimate the likelihood that they are correct.
- Overconfidence occurs when our *confidence is greater than our accuracy.*
- Even when participants claim to be 100% certain of their answers, they are right only 85% of the time.

# "Everything takes longer than it takes"

- Overconfident planning leads people to think that they can get a lot more done than they think they can.
- One study showed that students typically took twice as many days to complete a project as they originally predicted it would take them.

# Why are we overconfident?

- Being falsely overconfident may be a *way to protect our well-being*.
- Overconfidence is associated with happiness and making tough decisions more easily.
- This overconfidence *allows us to think everything will work out*, and belief in our own judgment can keep us from fretting and stewing about things.

# Framing

- Framing is the way we word or present an issue
- This can dramatically influence our decisions and our judgment

# How framing affects our opinions

- For example, you could say that condoms have a 95% success rate or that they have a 5% failure rate. The two statements are equally true.
- However, 90% of college students who read only the first statement rated condoms as effective and only 40% did after reading the second statement.

#### Module 27: Thinking and Language

Language

# Language

- Our spoken, written, or gestured words and the ways we combine them to communicate meaning
- Human culture as we know it would not exist without language, which *lets us transmit our ideas* across barriers of time and space.

#### Module 27: Thinking and Language

# Building Blocks of Language

# Phoneme

- We build our language from basic elements and follow rules to determine how we can combine the pieces
- The basic building block of spoken language is the phoneme, *the smallest distinctive unit of sound*
- Phonemes are *spoken* sounds, not written symbols or words (except for "a" and "I")
- They don't usually have meaning in and of themselves (the *p* sound or the *f* sound)

## Phoneme

- English has about 40 phonemes.
- Some languages have hundreds of phonemes, including clicks or sounds
- As a young baby you could produce all the phonemes of all the languages of the world, but by your 1<sup>st</sup> birthday you lose this ability and only start to use those of your native language.

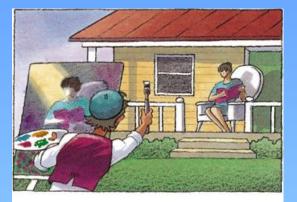
# Why we speak with accents

- If you are a Japanese speaker, you may find distinguishing the English *r* and *l* sounds challenging because these sounds are not part of the Japanese language.
- Likewise, it is hard for us to pronounce German's breathy *ch* sound (as in *Ich*, the German word for I)
- And German speakers struggle with the English *th* and thus pronounce *this* as *dis*

# Morpheme

- Though phonemes don't have meaning (with the exception of *I* or *A*), they can be combined to form a *morpheme*.
- A morpheme is the the smallest unit that carries meaning in a language
- May be a word or part of a word
- The word *water* is made up of four phonemes: *w*, *a*, *t*, and *r* (the written *e* has no sound of its own in this word)

# Multiple Morphemes


- Words often have more than one morpheme
- For example, *waterfall* has two: water and fall
- The word *watered* also has two: water and the *ed* suffix
- Morphemes can also be added at the beginning of words as a suffix like *un* in *unwind*
- English has about 100,000 morphemes and this allows almost infinite flexibility in spoken language

## Grammar

- Just stringing several words together does not create a sentence.
- To have a sentence, you must follow the rules of *grammar*, a system of rules that govern how we can combine phonemes, morphemes and words to produce meaningful communication.
- Despite these elaborate rules, language can still be unclear (see next slide)

## Grammar - Context

The artist painted me on the porch.



Despite being grammatically correct, this sentence is open to several interpretations.





# Structure of Language

Trillions of sentences

Hundreds of thousands of words

100,000 morphemes


----- 40 phonemes

All represented by combinations of 26 letters

#### Module 27: Thinking and Language

# Language Acquisition

# Noam Chomsky (1928-



- Linguist who argues that children have a *predisposition* to learn language
- A person's brain is *hardwired* to learn vocabulary and the rules of grammar just like a bird is hardwired to fly
- This is the *nature* argument we are *born* with this ability

# B.F. Skinner and Language

- Skinner believed language was the result of *learning* through:
  - -Association: linking certain sounds with certain people or objects
  - -Imitation: doing what we see others doing
  - -*Reinforcement* or *punishments*: hugs, smiles, etc.
  - -This is the *nurture* argument we learn language; we're not born with it

# Nurture or Nature?

- So who is right?
- They are *both* partially right and both partially wrong.
- Chomsky's view that we are born with a predisposition to learn language helps explain why *all languages* have complex sets of rules.
- Skinner's view that we learn language through association, imitation, and rewards helps explain why we speak the language we hear at home.

#### Module 27: Thinking and Language

# Language Stages

# Language Acquisition Stages

- How and when do children master language?
- Just like we go through a *maturational sequence* of learning to walk, we also go through one for learning to talk
- Three-step process:
  - -Babbling
  - -One-Word Stage
  - -Two-Word Stage



# Babbling

- By 4 months of age, babies can spontaneously babble phonemes.
- Will babble *all the phonemes of the world* initially, but will begin to babble only the phonemes of the language they hear spoken at about 1 year of age
- By 10 months old, an expert can tell what language is spoken in the home just by listening to the babbling baby

# Babbling

**Table 27.1** 

#### **Stages of Language Development**

Age in Months (Approximate)

4

#### Achievement

Babbling of many speech sounds

# **One-Word Stage**

- By about their first birthday, babies begin to use their ability to produce sounds to communicate *meaning*
- In this stage, the child starts with onesyllable words like *ma* or *da* and quickly improves to using *one word* to convey a complete thought or idea (thing or action) like *kitty* or *run*

# **One-Word Stage**

**Table 27.1** 

#### **Stages of Language Development**

# Age in Months (Approximate)

4

12

#### Achievement

Babbling of many speech sounds

One-word expressions

# Two-Word Stage

- By their 2<sup>nd</sup> birthday, most babies have reached the two-word stage.
- Now they can build *two-word sentences*, showing an appreciation of the rules of grammar of their native language
- For example, English-speaking children put adjectives before nouns (*big house*) and Spanish speakers put the noun first (*casa grande*)

# Expanded Language

- After 24 months, children build on the phonemes, morphemes, words, and grammatical rules they have already mastered to *develop longer and more complex sentences*.
- Vocabulary grows at an amazing pace, with the average child learning *5,000 words/year* or 13 words/day! (most outside of school)
- By the time you graduate high school, you will have a vocabulary of 60,000 words

# Two-Word Stage

Table 27.1

#### **Stages of Language Development**

| Age in Months<br>(Approximate) | Achievement                             |
|--------------------------------|-----------------------------------------|
| 4                              | Babbling of many speech sounds          |
| 12                             | One-word expressions                    |
| 24                             | Two-word sentences                      |
| 24+                            | Rapid development of complete sentences |

# Overgeneralization

- Occurs when children *apply a grammatical rule they have learned too broadly*
- For example, turning nouns into verbs
- A child who knows what a broom is may say he is *brooming*, rather than *sweeping*
- Likewise, children will say that they *goed* to the store rather than *went* to the store.

### Overgeneralization

Grandpa, Yesterday I helped mommy broom the floor, and then we goed to the toy Store.

# Spoken not Written

- While it is cute and amusing, this overgeneralization points to the brain's ability to soak up language rules
- This easy learning of language applies only to *spoken* language.
- We must go to school to master *written* language reading and writing.

# Is it ever too late to learn language?

- While young children easily learn spoken language at an early age, this becomes more difficult after about age 10, when a critical developmental window seems to slam shut (the *critical period* theory)
- Linguists argue that foreign languages should be taught much earlier than middle school
- Chomsky's *nature* argument suggested that once we hit puberty it may be too late to learn language (*Genie* case raised in isolation through first decade of life- never spoken to or learned to speak)

# Whorf's Linguistic Relativity Hypothesis

- Benjamin Whorf was a linguist who believed that language does more than just describe a person's culture.
- Whorf argued that a person's *language may also shape a person's thoughts and perceptions*.

# Eskimo Language

- For example, Eskimos (Inuits) have many different words for snow. In contrast, English has the one word – "snow".
- We have the same word for falling snow, snow on the ground, snow packed hard like ice, slushy snow, wind-driven flying snow – whatever the situation may be.
- To an Eskimo, this all-inclusive word would be almost unthinkable: he would say that falling snow, slushy snow, and so on are *completely different* and he would use different words for them and other kinds of snow.

# The End