Thinking About Psychology: The Science of Mind and Behavior 2e

Charles T. Blair-Broeker Randal M. Ernst

Methods Domain

Research and Statistics Chapter

Module 5

Psychology's Statistics

Statistics

- Are a means to make data more meaningful
- Provide a method of organizing information so that it can be understood

Frequency Distributions

Experimental Design

Frequency Distribution

• A list of scores placed in order from highest to lowest

Grades, in random order		Frequency distributions	
No headphones	Headphones	No headphones	Headphones
80	65	97	94
58	83	93	92
97	75	93	87
77	72	89	83
93	92	89	82
69	67	84	79
67	87	84	77
89	79	84	75
93	94	80	74
78	74	78	72
84	82	77	71
73	77	72	69
84	68	69	68
84	71	67	68
89	69	58	64

Bar Graphs

 Used to present data from frequency distributions

Measures of Central Tendency

Measures of Central Tendency

- Statistical methods for finding the center of a distribution
- Three methods:
 - -Mode
 - -Mean
 - -Median

Measures of Central Tendency: Mode

Mode

- The score that occurs the most frequently in a distribution
- Most useful in circumstances where the data can be placed into distinct groups

Mode

Measures of Central Tendency: Mean

Mean

- The arithmetic average of a distribution,
- Obtained by adding the scores and then dividing by the number of scores
- Usually the measure of central tendency of choice

Measures of Central Tendency: Median

Mean

	No headphones	Headphones
Mode (Most common)	84	68
Mean (Average)	$\frac{1215}{15} = 81$	¹¹⁵⁵ / ₁₅ = 77

Median

- The middle score in a ranked distribution
- One half of the scores are above the median, one half of the scores are below it.

Median

	No headphones	Headphones
Mode (Most common)	84	68
Mean (Average)	$\frac{1215}{15} = 81$	$\frac{1155}{15} = 77$
Median (Middle score)	84	75

Skewed

- Distorted
- In a skewed distribution the scores are not evenly distributed around the mean.

Measures of Variation

Measures of Variation: Range

Range

• The difference between the highest and the lowest scores in a distribution

Measures of Variation: Standard Deviation

Standard Deviation

- A computed measure of how much scores vary around the mean score of a distribution
- The higher the standard deviation, the more the more spread out the scores are

- Calculate the mean of the data.
- Determine how far each score deviates from the mean.
- Square the deviation and average them.
- Take the square root of the average of the squared deviation scores.

1. Calculate the mean

 $36 \text{ yards} \\ 38 \text{ yards} \\ 41 \text{ yards} \\ \underline{45} \text{ yards} \\ \text{Mean} = \frac{160}{4} = 40 \text{ yards}$

1. Calculate
the mean2. Determine deviation
from the
mean (40 yards)36 yards-4 yards36 yards-2 yards38 yards-2 yards41 yards+1 yard45 yards+5 yards

Mean = $\frac{160}{4}$ = 40 yards

1. Calculate the mean	2. Determine deviation from the mean (40 yards)	3. Square the deviations
36 yards	-4 yards	16 yards ²
38 yards	-2 yards	4 yards ²
41 yards	+1 yard	1 yard ²
45 yards	+5 yards	25 yards ²
Mean = $\frac{160}{4}$ = 40 yards	977 1	46 yards ² = Sum of (deviations) ²

1. Calculate the mean	2. Determine deviation from the mean (40 yards)	3. Square the deviations
36 yards	-4 yards	16 yards ²
38 yards	-2 yards	4 yards ²
41 yards	+1 yard	1 yard ²
45 yards	+5 yards	25 yards ²
Mean = $\frac{160}{4}$ = 40 yards		46 yards ² = Sum of (deviations) ²

4. Take the square root of the mean of column 3

Standard deviation =
$$\sqrt{\frac{\text{Sum of (deviations)}^2}{\text{Number of punts}}} = \sqrt{\frac{46 \text{ yards}^2}{4}} = 3.4 \text{ yards}$$

Normal Distribution

Normal Distribution

- The symmetrical, bell-shaped curve that describes the distribution of many physical and psychological variables
- Most scores fall near the mean, with fewer and fewer scores at the extreme.
- The mean, median, and mode are all the same (the highest point of the curve) in a normal distribution.

Normal Distribution

Comparative Statistics

Percentage

• A comparative statistic that compares a score to a perfect score, assuming the perfect score is 100

Percentile Rank

- A comparative statistic that compares a score to other scores, in an imaginary group of 100 individuals
- The percentile rank indicates how many of the hundred scores are at or below a particular score.

Assume Jack gets 160 points on a 200-point test. His score is good enough to to top 27 students out of his class of 36 students.

Assume Jack gets 160 points on a 200-point test. His score is good enough to to top 27 students out of his class of 36 students.

Percentage

 $\frac{160 \text{ correct}}{200 \text{ possible}} \times 100 = 80\%$

Assume Jack gets 160 points on a 200-point test. His score is good enough to to top 27 students out of his class of 36 students.

Percentage

 $\frac{160 \text{ correct}}{200 \text{ possible}} \times 100 = 80\%$

Meaning: If the test had been 100 points, Jack would have had 80 right.

80	20
right	wrong
100 point	S

Assume Jack gets 160 points on a 200-point test. His score is good enough to to top 27 students out of his class of 36 students.

Percentage

 $\frac{160 \text{ correct}}{200 \text{ possible}} \times 100 = 80\%$

Meaning: If the test had been 100 points, Jack would have had 80 right.

80 right		20 wrong
	100 points	

Percentile rank

27 students beaten 36 total students × 100 = 75th percentile

Assume Jack gets 160 points on a 200-point test. His score is good enough to to top 27 students out of his class of 36 students.

Percentage

 $\frac{160 \text{ correct}}{200 \text{ possible}} \times 100 = 80\%$

Meaning: If the test had been 100 points, Jack would have had 80 right.

80	20
right	wrong
100 points	

Percentile rank

27 students beaten 36 total students × 100 = 75th percentile

Meaning: If 100 students had taken the test, Jack would have scored higher than 75 of them.

Correlation Coefficient

Correlation Coefficient

- A statistical measure of the strength of the relationship between two variables
- Extent to which two things vary together

Positive Correlation

- As the value of one variable increases (or decreases), the value of the other variable increases (or decreases).
- A perfect positive correlation is +1.0.
- The closer the correlation is to +1.0 the stronger the relationship.

Negative Correlation

- As the value of one variable increases, the value of the other variable decreases.
- A perfect negative correlation if -1.0.
- The closer the correlation is to -1.0 the stronger the relationship.

Zero Correlation

• There is no relationship whatsoever between the two variables.

Zero Correlation

Statistical Inference

Inferential Statistics

 Statistics that can be used to make a decision or reach a conclusion about data

Statistical Significance

• A statistical statement of how likely it is that a result occurred by chance alone

Significance Difference

The End